Introduction
Getting Started
- QuickStart
Patterns
- Languages
- Security
- Performance
- CPU-Intensive Operations
- Memory Leaks
- Inefficient Algorithms
- Database Performance
- Network Bottlenecks
- Resource Contention
- Inefficient Data Structures
- Excessive Object Creation
- Synchronization Issues
- I/O Bottlenecks
- String Manipulation
- Inefficient Loops
- Lazy Loading Issues
- Caching Problems
- UI Rendering Bottlenecks
- Serialization Overhead
- Logging overhead
- Reflection misuse
- Thread pool issues
- Garbage collection issues
Integrations
- Code Repositories
- Team Messengers
- Ticketing
Enterprise
String Manipulation
Anti-patterns related to string manipulation that can lead to performance issues.
String manipulation is one of the most common operations in programming, but it can also be a significant source of performance issues when not implemented efficiently. Inefficient string operations can lead to excessive memory usage, garbage collection pressure, and CPU overhead.
Common string manipulation performance issues include:
- Inefficient string concatenation
- Excessive temporary string creation
- Improper use of regular expressions
- Inefficient string parsing and formatting
- Unnecessary string conversions
This guide covers common anti-patterns related to string manipulation, along with best practices for optimizing string operations across different programming languages and application types.
// Anti-pattern: String concatenation in loops
public String buildReportInefficiently(List<String> items) {
String report = "";
for (String item : items) {
// Creates a new String object in each iteration
report = report + item + "\n";
}
return report;
}
// Better approach: Using StringBuilder
public String buildReportEfficiently(List<String> items) {
// Preallocate capacity for better performance
StringBuilder reportBuilder = new StringBuilder(items.size() * 20); // Assuming average item length
for (String item : items) {
reportBuilder.append(item).append("\n");
}
return reportBuilder.toString();
}
// Anti-pattern: String concatenation in loops
function buildReportInefficiently(items) {
let report = '';
for (let i = 0; i < items.length; i++) {
// Creates a new string in each iteration
report = report + items[i] + '\n';
}
return report;
}
// Better approach: Using array join
function buildReportEfficiently(items) {
// Create array and join at the end (much more efficient)
const lines = items.map(item => item);
return lines.join('\n') + '\n';
}
Inefficient string concatenation in loops, especially using the +
operator, can lead to the creation of many temporary string objects, resulting in excessive memory usage and garbage collection pressure.
To optimize string concatenation:
- Use StringBuilder/StringBuffer in Java
- Use array.join() in JavaScript
- Use ”.join(list) in Python
- Preallocate capacity when the final size is known or can be estimated
- Minimize the number of concatenation operations
- Consider using string interpolation or formatting for simple cases
- Use specialized libraries for very large string manipulations
- Be aware of the performance characteristics of string operations in your language
- Consider using string builders with chaining methods
- Avoid unnecessary conversions to strings
// Anti-pattern: Inefficient regular expression usage
public boolean validateEmailsInefficiently(List<String> emails) {
for (String email : emails) {
// Compiles the pattern for each email
Pattern pattern = Pattern.compile("^[A-Za-z0-9+_.-]+@(.+)$");
Matcher matcher = pattern.matcher(email);
if (!matcher.matches()) {
return false;
}
}
return true;
}
// Better approach: Compile pattern once
public boolean validateEmailsEfficiently(List<String> emails) {
// Compile the pattern once
Pattern pattern = Pattern.compile("^[A-Za-z0-9+_.-]+@(.+)$");
for (String email : emails) {
// Reuse the compiled pattern
Matcher matcher = pattern.matcher(email);
if (!matcher.matches()) {
return false;
}
}
return true;
}
// Even better: Define as static constant
private static final Pattern EMAIL_PATTERN =
Pattern.compile("^[A-Za-z0-9+_.-]+@(.+)$");
public boolean validateEmailsOptimally(List<String> emails) {
for (String email : emails) {
// Use the static pattern
Matcher matcher = EMAIL_PATTERN.matcher(email);
if (!matcher.matches()) {
return false;
}
}
return true;
}
// Anti-pattern: Inefficient regular expression usage
function validateEmailsInefficiently(emails) {
for (const email of emails) {
// Creates a new RegExp object for each email
const pattern = new RegExp('^[A-Za-z0-9+_.-]+@(.+)$');
if (!pattern.test(email)) {
return false;
}
}
return true;
}
// Better approach: Define regex once
function validateEmailsEfficiently(emails) {
// Define the pattern once
const pattern = /^[A-Za-z0-9+_.-]+@(.+)$/;
for (const email of emails) {
// Reuse the same pattern
if (!pattern.test(email)) {
return false;
}
}
return true;
}
Regular expressions are powerful but can be expensive to compile and execute. Creating new regex pattern objects repeatedly, especially in loops or frequently called methods, leads to unnecessary object creation and performance overhead.
To optimize regular expression usage:
- Compile regex patterns once and reuse them
- Define frequently used patterns as static constants
- Consider using simpler string operations when regex is overkill
- Be aware of regex engine limitations and backtracking issues
- Test regex performance with realistic inputs
- Use non-capturing groups when capture isn’t needed
- Optimize regex patterns for efficiency
- Consider using specialized regex libraries for complex patterns
- Cache regex results for repeated operations on the same input
- In JavaScript, use literal notation (/pattern/) instead of constructor (new RegExp())
// Anti-pattern: Excessive string splitting and joining
public String processTextInefficiently(String text) {
// Split the text into words
String[] words = text.split(" ");
// Process each word
for (int i = 0; i < words.length; i++) {
// Split each word into characters
char[] chars = words[i].toCharArray();
// Process characters
for (int j = 0; j < chars.length; j++) {
if (Character.isLowerCase(chars[j])) {
chars[j] = Character.toUpperCase(chars[j]);
}
}
// Join characters back into a word
words[i] = new String(chars);
}
// Join words back into text
StringBuilder result = new StringBuilder();
for (String word : words) {
result.append(word).append(" ");
}
return result.toString().trim();
}
// Better approach: Minimize splitting and joining
public String processTextEfficiently(String text) {
StringBuilder result = new StringBuilder(text.length());
boolean isNewWord = true;
// Process the text character by character
for (int i = 0; i < text.length(); i++) {
char c = text.charAt(i);
if (c == ' ') {
result.append(c);
isNewWord = true;
} else {
// Convert to uppercase if it's a lowercase letter
if (Character.isLowerCase(c)) {
result.append(Character.toUpperCase(c));
} else {
result.append(c);
}
isNewWord = false;
}
}
return result.toString();
}
// Anti-pattern: Excessive string splitting and joining
function processTextInefficiently(text) {
// Split the text into words
const words = text.split(' ');
// Process each word
for (let i = 0; i < words.length; i++) {
// Split each word into characters
const chars = words[i].split('');
// Process characters
for (let j = 0; j < chars.length; j++) {
const code = chars[j].charCodeAt(0);
// If lowercase letter, convert to uppercase
if (code >= 97 && code <= 122) {
chars[j] = String.fromCharCode(code - 32);
}
}
// Join characters back into a word
words[i] = chars.join('');
}
// Join words back into text
return words.join(' ');
}
// Better approach: Minimize splitting and joining
function processTextEfficiently(text) {
let result = '';
// Process the text character by character
for (let i = 0; i < text.length; i++) {
const char = text[i];
const code = text.charCodeAt(i);
// If lowercase letter, convert to uppercase
if (code >= 97 && code <= 122) {
result += String.fromCharCode(code - 32);
} else {
result += char;
}
}
return result;
}
Excessive string splitting and joining, especially nested operations, can lead to the creation of many temporary string objects and arrays, resulting in poor performance and increased memory usage.
To minimize string splitting and joining:
- Process strings character by character when possible
- Use specialized string processing libraries
- Consider using regular expressions for complex pattern matching
- Use StringBuilder/StringBuffer for building strings
- Minimize the number of split/join operations
- Be aware of the performance characteristics of split/join in your language
- Consider using string views or slices when available
- Use appropriate data structures for string processing
- Consider using specialized algorithms for specific string operations
- Profile string operations to identify bottlenecks
// Anti-pattern: Inefficient string formatting
public String formatUserDataInefficiently(User user) {
// Multiple string concatenations
String formatted = "User: " + user.getFirstName() + " " + user.getLastName() +
"\nEmail: " + user.getEmail() +
"\nAge: " + user.getAge() +
"\nAddress: " + user.getAddress().getStreet() + ", " +
user.getAddress().getCity() + ", " +
user.getAddress().getState() + " " +
user.getAddress().getZipCode();
return formatted;
}
// Better approach: Using String.format
public String formatUserDataWithStringFormat(User user) {
Address address = user.getAddress();
return String.format("User: %s %s\nEmail: %s\nAge: %d\nAddress: %s, %s, %s %s",
user.getFirstName(), user.getLastName(),
user.getEmail(),
user.getAge(),
address.getStreet(), address.getCity(),
address.getState(), address.getZipCode());
}
// Another approach: Using StringBuilder
public String formatUserDataWithStringBuilder(User user) {
Address address = user.getAddress();
StringBuilder sb = new StringBuilder(100); // Preallocate capacity
sb.append("User: ").append(user.getFirstName()).append(" ").append(user.getLastName())
.append("\nEmail: ").append(user.getEmail())
.append("\nAge: ").append(user.getAge())
.append("\nAddress: ").append(address.getStreet()).append(", ")
.append(address.getCity()).append(", ")
.append(address.getState()).append(" ")
.append(address.getZipCode());
return sb.toString();
}
// Anti-pattern: Inefficient string formatting
function formatUserDataInefficiently(user) {
// Multiple string concatenations
const formatted = "User: " + user.firstName + " " + user.lastName +
"\nEmail: " + user.email +
"\nAge: " + user.age +
"\nAddress: " + user.address.street + ", " +
user.address.city + ", " +
user.address.state + " " +
user.address.zipCode;
return formatted;
}
// Better approach: Using template literals
function formatUserDataWithTemplateLiterals(user) {
const { firstName, lastName, email, age, address } = user;
const { street, city, state, zipCode } = address;
return `User: ${firstName} ${lastName}
` +
`Email: ${email}
` +
`Age: ${age}
` +
`Address: ${street}, ${city}, ${state} ${zipCode}`;
}
Inefficient string formatting, such as using multiple concatenations or not using appropriate formatting utilities, can lead to the creation of many temporary string objects and poor performance.
To optimize string formatting:
- Use appropriate formatting utilities (String.format, StringBuilder, etc.)
- Use template literals in JavaScript
- Consider using string interpolation when available
- Minimize the number of formatting operations
- Reuse format strings for repeated formatting
- Consider using specialized formatting libraries for complex formatting
- Be aware of the performance characteristics of formatting operations
- Use appropriate data types for formatting (e.g., StringBuilder vs String.format)
- Consider caching formatted strings for frequently used values
- Profile formatting operations to identify bottlenecks
// Anti-pattern: Unnecessary string conversions
public double calculateAverageInefficiently(List<String> numberStrings) {
double sum = 0;
for (String numberStr : numberStrings) {
// Convert string to double
double number = Double.parseDouble(numberStr);
sum += number;
}
return sum / numberStrings.size();
}
public String processDataInefficiently(int value) {
// Convert int to String and back multiple times
String valueStr = String.valueOf(value);
int length = valueStr.length();
int firstDigit = Integer.parseInt(valueStr.substring(0, 1));
int lastDigit = Integer.parseInt(valueStr.substring(length - 1));
int sum = firstDigit + lastDigit;
return String.valueOf(sum);
}
// Better approach: Minimize conversions
public double calculateAverageEfficiently(List<String> numberStrings) {
double sum = 0;
for (String numberStr : numberStrings) {
// Still need to convert string to double, but no unnecessary conversions
sum += Double.parseDouble(numberStr);
}
return sum / numberStrings.size();
}
public String processDataEfficiently(int value) {
// Work with int directly without string conversions
int firstDigit = value;
while (firstDigit >= 10) {
firstDigit /= 10;
}
int lastDigit = value % 10;
int sum = firstDigit + lastDigit;
return String.valueOf(sum);
}
// Anti-pattern: Unnecessary string conversions
function calculateAverageInefficiently(numberStrings) {
let sum = 0;
for (const numberStr of numberStrings) {
// Convert string to number
const number = parseFloat(numberStr);
sum += number;
}
return sum / numberStrings.length;
}
function processDataInefficiently(value) {
// Convert number to string and back multiple times
const valueStr = value.toString();
const length = valueStr.length;
const firstDigit = parseInt(valueStr[0]);
const lastDigit = parseInt(valueStr[length - 1]);
const sum = firstDigit + lastDigit;
return sum.toString();
}
// Better approach: Minimize conversions
function calculateAverageEfficiently(numberStrings) {
let sum = 0;
for (const numberStr of numberStrings) {
// Still need to convert string to number, but no unnecessary conversions
sum += parseFloat(numberStr);
}
return sum / numberStrings.length;
}
function processDataEfficiently(value) {
// Work with number directly without string conversions
let firstDigit = value;
while (firstDigit >= 10) {
firstDigit = Math.floor(firstDigit / 10);
}
const lastDigit = value % 10;
const sum = firstDigit + lastDigit;
return sum.toString();
}
Unnecessary string conversions, such as converting between strings and other data types when not required, can lead to performance overhead and increased memory usage.
To minimize unnecessary string conversions:
- Work with appropriate data types directly when possible
- Avoid converting data back and forth between strings and other types
- Use appropriate parsing and formatting methods
- Consider using specialized libraries for complex conversions
- Be aware of the performance characteristics of conversion operations
- Batch conversions when possible
- Cache conversion results for frequently used values
- Consider using specialized algorithms for specific conversions
- Profile conversion operations to identify bottlenecks
- Use appropriate data structures for the task at hand
// Anti-pattern: Inefficient substring operations
public List<String> extractTagsInefficiently(String content) {
List<String> tags = new ArrayList<>();
int startIndex = 0;
while (true) {
// Find opening tag
startIndex = content.indexOf("<tag>", startIndex);
if (startIndex == -1) break;
// Find closing tag
int endIndex = content.indexOf("</tag>", startIndex);
if (endIndex == -1) break;
// Extract tag content (creates a new string)
String tagContent = content.substring(startIndex + 5, endIndex);
tags.add(tagContent);
// Move past this tag
startIndex = endIndex + 6;
}
return tags;
}
// Better approach: Using regex with proper pattern reuse
private static final Pattern TAG_PATTERN = Pattern.compile("<tag>(.*?)</tag>");
public List<String> extractTagsEfficiently(String content) {
List<String> tags = new ArrayList<>();
Matcher matcher = TAG_PATTERN.matcher(content);
// Find all matches at once
while (matcher.find()) {
// Extract group 1 (the content between tags)
tags.add(matcher.group(1));
}
return tags;
}
// Anti-pattern: Inefficient substring operations
function extractTagsInefficiently(content) {
const tags = [];
let startIndex = 0;
while (true) {
// Find opening tag
startIndex = content.indexOf("<tag>", startIndex);
if (startIndex === -1) break;
// Find closing tag
const endIndex = content.indexOf("</tag>", startIndex);
if (endIndex === -1) break;
// Extract tag content (creates a new string)
const tagContent = content.substring(startIndex + 5, endIndex);
tags.push(tagContent);
// Move past this tag
startIndex = endIndex + 6;
}
return tags;
}
// Better approach: Using regex with proper pattern reuse
function extractTagsEfficiently(content) {
const tags = [];
const tagPattern = /<tag>(.*?)</tag>/g;
let match;
// Find all matches
while ((match = tagPattern.exec(content)) !== null) {
// Extract group 1 (the content between tags)
tags.push(match[1]);
}
return tags;
}
Inefficient substring operations, especially when performed repeatedly in loops or when processing large strings, can lead to excessive memory usage and poor performance due to the creation of many temporary string objects.
To optimize substring operations:
- Use regular expressions for pattern-based extraction
- Consider using string views or slices when available
- Minimize the number of substring operations
- Use appropriate data structures for string processing
- Consider using specialized string processing libraries
- Be aware of the memory implications of substring operations in your language
- Use specialized algorithms for specific substring operations
- Consider using streaming approaches for large strings
- Profile substring operations to identify bottlenecks
- Consider using character-by-character processing for simple cases
// Anti-pattern: Inefficient string interning
public class StringInternIssues {
private final Map<String, UserData> userDataMap = new HashMap<>();
public void processUserData(List<UserData> userDataList) {
for (UserData userData : userDataList) {
// Each key is a new String object, even if the content is identical
String userId = userData.getUserId();
userDataMap.put(userId, userData);
}
}
public void processUserDataWithExcessiveInterning() {
// Load a large dataset
List<String> largeDataset = loadLargeDataset();
// Intern every string, causing memory pressure in the string pool
for (String data : largeDataset) {
data = data.intern(); // Excessive interning
processData(data);
}
}
// Better approach: Selective interning
public void processUserDataEfficiently(List<UserData> userDataList) {
for (UserData userData : userDataList) {
// Intern only for frequently used, small strings like user IDs
String userId = userData.getUserId().intern();
userDataMap.put(userId, userData);
}
}
private List<String> loadLargeDataset() {
// Load a large dataset
return new ArrayList<>(); // Placeholder
}
private void processData(String data) {
// Process the data
}
}
// JavaScript doesn't have explicit string interning like Java,
// but similar issues can arise with string identity and memory usage
// Anti-pattern: Creating many duplicate strings
function processUserData(userDataList) {
const userDataMap = {};
for (const userData of userDataList) {
// Each key might be a new string object, even if content is identical
const userId = userData.userId;
userDataMap[userId] = userData;
}
return userDataMap;
}
// Better approach: Using a Map with object identity
function processUserDataEfficiently(userDataList) {
// Using a Map allows for better key management
const userDataMap = new Map();
// Create a dictionary of known IDs for reuse
const knownIds = {};
for (const userData of userDataList) {
// Reuse string instances for common IDs
let userId = userData.userId;
if (knownIds[userId]) {
userId = knownIds[userId];
} else {
knownIds[userId] = userId;
}
userDataMap.set(userId, userData);
}
return userDataMap;
}
String interning (the process of storing only one copy of each distinct string value) can be beneficial for memory usage when dealing with many duplicate strings, but improper use can lead to memory leaks, increased garbage collection pressure, or performance issues.
To optimize string interning:
- Use interning selectively for frequently used, small strings
- Avoid interning large or dynamically generated strings
- Be aware of the memory implications of string interning
- Consider using custom interning mechanisms for specific use cases
- Use appropriate data structures that handle string identity efficiently
- Be mindful of the string pool size and garbage collection impact
- Consider the trade-offs between memory usage and performance
- Profile string usage to identify interning opportunities
- Use language-specific interning mechanisms appropriately
- Consider the lifecycle of interned strings
// Anti-pattern: Inefficient string comparison
public boolean containsIgnoreCaseInefficiently(List<String> list, String target) {
for (String item : list) {
// Creates new lowercase strings for each comparison
if (item.toLowerCase().equals(target.toLowerCase())) {
return true;
}
}
return false;
}
// Better approach: Minimize object creation
public boolean containsIgnoreCaseEfficiently(List<String> list, String target) {
// Convert target to lowercase once
String targetLower = target.toLowerCase();
for (String item : list) {
// Convert each item once
if (item.toLowerCase().equals(targetLower)) {
return true;
}
}
return false;
}
// Even better: Using case-insensitive comparison methods
public boolean containsIgnoreCaseOptimally(List<String> list, String target) {
for (String item : list) {
// Use equalsIgnoreCase to avoid creating new strings
if (item.equalsIgnoreCase(target)) {
return true;
}
}
return false;
}
// Anti-pattern: Inefficient string comparison
function containsIgnoreCaseInefficiently(list, target) {
for (const item of list) {
// Creates new lowercase strings for each comparison
if (item.toLowerCase() === target.toLowerCase()) {
return true;
}
}
return false;
}
// Better approach: Minimize object creation
function containsIgnoreCaseEfficiently(list, target) {
// Convert target to lowercase once
const targetLower = target.toLowerCase();
for (const item of list) {
// Convert each item once
if (item.toLowerCase() === targetLower) {
return true;
}
}
return false;
}
// Even better: Using localeCompare with options
function containsIgnoreCaseOptimally(list, target) {
for (const item of list) {
// Use localeCompare with ignoreCase option
if (item.localeCompare(target, undefined, { sensitivity: 'base' }) === 0) {
return true;
}
}
return false;
}
Inefficient string comparison, especially when performed repeatedly or with case-insensitive comparisons, can lead to the creation of many temporary string objects and poor performance.
To optimize string comparison:
- Use appropriate comparison methods (equalsIgnoreCase, localeCompare)
- Minimize the creation of temporary strings
- Consider using specialized comparison algorithms for specific use cases
- Be aware of the performance characteristics of comparison operations
- Consider caching comparison results for frequently compared values
- Use appropriate data structures for string lookup (e.g., HashSet)
- Consider using specialized string comparison libraries
- Be mindful of locale and encoding issues in comparisons
- Profile comparison operations to identify bottlenecks
- Consider the trade-offs between correctness and performance
// Anti-pattern: Inefficient string buffer sizing
public String buildLargeStringInefficiently(List<String> items) {
// Default initial capacity (16 characters)
StringBuilder builder = new StringBuilder();
// Will cause multiple resizing operations
for (String item : items) {
builder.append(item).append(", ");
}
// Remove trailing comma and space
if (builder.length() > 0) {
builder.setLength(builder.length() - 2);
}
return builder.toString();
}
// Better approach: Proper buffer sizing
public String buildLargeStringEfficiently(List<String> items) {
// Estimate required capacity
int estimatedSize = 0;
for (String item : items) {
estimatedSize += item.length() + 2; // +2 for ", "
}
// Preallocate with estimated capacity
StringBuilder builder = new StringBuilder(estimatedSize);
// No resizing needed
for (String item : items) {
builder.append(item).append(", ");
}
// Remove trailing comma and space
if (builder.length() > 0) {
builder.setLength(builder.length() - 2);
}
return builder.toString();
}
// JavaScript doesn't have explicit buffer sizing like Java's StringBuilder,
// but similar concepts apply with array-based string building
// Anti-pattern: Inefficient string building
function buildLargeStringInefficiently(items) {
let result = '';
// Will create many intermediate strings
for (const item of items) {
result += item + ', ';
}
// Remove trailing comma and space
if (result.length > 0) {
result = result.substring(0, result.length - 2);
}
return result;
}
// Better approach: Using array join
function buildLargeStringEfficiently(items) {
// No need to preallocate in JavaScript when using arrays
if (items.length === 0) {
return '';
}
// Join all items at once
return items.join(', ');
}
Inefficient string buffer sizing, such as not preallocating capacity for StringBuilder/StringBuffer or using inappropriate initial capacities, can lead to multiple expensive resize operations and memory copying.
To optimize string buffer sizing:
- Estimate the required capacity when possible
- Preallocate StringBuilder/StringBuffer with appropriate capacity
- Consider the growth factor of string buffers in your language
- Be aware of the memory implications of oversized buffers
- Use appropriate buffer types for different use cases
- Consider reusing buffers for repetitive operations
- Profile buffer operations to identify resize bottlenecks
- Consider the trade-offs between memory usage and performance
- Use specialized buffer implementations for specific use cases
- Be mindful of thread-safety requirements when choosing buffer types
String Manipulation Best Practices Checklist:
1. Efficient Concatenation
- Use StringBuilder/StringBuffer for multiple concatenations
- Preallocate capacity when the final size is known or can be estimated
- Use array.join() in JavaScript or ''.join() in Python
- Consider using string interpolation or formatting for simple cases
- Minimize the number of concatenation operations
2. Regular Expression Optimization
- Compile regex patterns once and reuse them
- Define frequently used patterns as static constants
- Use non-capturing groups when capture isn't needed
- Be aware of regex engine limitations and backtracking issues
- Consider simpler string operations when regex is overkill
3. Minimize Object Creation
- Avoid creating temporary strings when possible
- Process strings character by character when appropriate
- Reuse string objects when possible
- Be selective with string interning
- Use appropriate comparison methods to avoid temporary objects
4. Efficient Parsing and Formatting
- Use specialized parsing and formatting libraries
- Minimize the number of parsing and formatting operations
- Consider using specialized algorithms for specific formats
- Cache parsing and formatting results when appropriate
- Use appropriate buffer sizes for formatting operations
5. String Data Structures
- Choose appropriate data structures for string operations
- Consider specialized string data structures (tries, suffix trees)
- Use string views or slices when available
- Be aware of the memory implications of string storage
- Consider the trade-offs between memory usage and performance
Efficient string manipulation is critical for application performance, especially in text-heavy applications. By following best practices, you can significantly reduce memory usage, minimize garbage collection pressure, and improve overall performance.
Key principles for efficient string manipulation:
- Minimize temporary object creation
- Use appropriate tools and data structures for different string operations
- Be aware of the performance characteristics of string operations in your language
- Consider the memory implications of string manipulation
- Batch string operations when possible
- Profile string operations to identify bottlenecks
- Consider the trade-offs between readability and performance
- Use specialized libraries for complex string processing
- Be mindful of character encoding and locale issues
- Stay updated on language-specific string optimization techniques