Matter AI | Code Reviewer Documentation home pagelight logodark logo
  • Contact
  • Github
  • Sign in
  • Sign in
  • Documentation
  • Blog
  • Discord
  • Github
  • Introduction
    • What is Matter AI?
    Getting Started
    • QuickStart
    Product
    • Security Analysis
    • Code Quality
    • Agentic Chat
    • RuleSets
    • Memories
    • Analytics
    • Command List
    • Configurations
    Patterns
    • Languages
    • Security
    • Performance
      • CPU-Intensive Operations
      • Memory Leaks
      • Inefficient Algorithms
      • Database Performance
      • Network Bottlenecks
      • Resource Contention
      • Inefficient Data Structures
      • Excessive Object Creation
      • Synchronization Issues
      • I/O Bottlenecks
      • String Manipulation
      • Inefficient Loops
      • Lazy Loading Issues
      • Caching Problems
      • UI Rendering Bottlenecks
      • Serialization Overhead
      • Logging overhead
      • Reflection misuse
      • Thread pool issues
      • Garbage collection issues
    Integrations
    • Code Repositories
    • Team Messengers
    • Ticketing
    Enterprise
    • Enterprise Deployment Overview
    • Enterprise Configurations
    • Observability and Fallbacks
    • Create Your Own GitHub App
    • Self-Hosting Options
    • RBAC
    Patterns
    Performance

    Memory Leaks

    Anti-patterns related to memory leaks that can degrade application performance over time.

    Memory leaks occur when an application allocates memory but fails to release it when no longer needed. This leads to a gradual consumption of available memory, eventually causing performance degradation, application crashes, or system instability.

    Common causes of memory leaks include:

    • Forgotten references to objects that are no longer needed
    • Unclosed resources like file handles, database connections, or network sockets
    • Circular references that prevent garbage collection
    • Event listeners that aren’t properly removed
    • Improper cache management

    Memory leaks are particularly problematic in long-running applications as they accumulate over time, leading to a phenomenon known as “memory bloat.”

    // Anti-pattern: Not closing resources properly
    public void readFile(String filePath) {
        try {
            FileInputStream fileStream = new FileInputStream(filePath);
            BufferedReader reader = new BufferedReader(new InputStreamReader(fileStream));
            
            String line;
            while ((line = reader.readLine()) != null) {
                processLine(line);
            }
            
            // Missing reader.close() and fileStream.close()
            // This will leak file handles
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    
    // Better approach: Using try-with-resources
    public void readFileCorrectly(String filePath) {
        try (FileInputStream fileStream = new FileInputStream(filePath);
             BufferedReader reader = new BufferedReader(new InputStreamReader(fileStream))) {
            
            String line;
            while ((line = reader.readLine()) != null) {
                processLine(line);
            }
            
            // Resources automatically closed when the try block exits
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    // Anti-pattern: Not closing database connections
    function queryDatabase(query) {
      const connection = openDatabaseConnection();
      
      // Run query
      const results = connection.execute(query);
      
      // Return results without closing the connection
      return results;
      
      // Missing connection.close()
    }
    
    // Better approach: Ensuring connections are closed
    async function queryDatabaseCorrectly(query) {
      const connection = await openDatabaseConnection();
      
      try {
        // Run query
        const results = await connection.execute(query);
        return results;
      } finally {
        // Always close the connection, even if an error occurs
        await connection.close();
      }
    }

    Failing to close resources like file handles, database connections, network sockets, or streams leads to resource leaks that can exhaust system resources and cause memory leaks.

    To prevent resource leaks:

    • Always close resources in a finally block or use language features like try-with-resources in Java
    • Use the appropriate pattern for your language (e.g., using statement in C#, with statement in Python)
    • Consider using resource management libraries or utilities
    • Implement proper error handling to ensure resources are closed even when exceptions occur
    • Use connection pooling for database connections
    • Consider implementing AutoCloseable interface for custom resources
    // Anti-pattern: Not removing event listeners
    class ComponentWithLeak {
      constructor(element) {
        this.element = element;
        this.handleClick = this.handleClick.bind(this);
        
        // Add event listener
        this.element.addEventListener('click', this.handleClick);
      }
      
      handleClick() {
        console.log('Element clicked');
      }
      
      // Missing cleanup method to remove the event listener
    }
    
    // Better approach: Properly removing event listeners
    class ComponentWithoutLeak {
      constructor(element) {
        this.element = element;
        this.handleClick = this.handleClick.bind(this);
        
        // Add event listener
        this.element.addEventListener('click', this.handleClick);
      }
      
      handleClick() {
        console.log('Element clicked');
      }
      
      // Cleanup method to remove the event listener
      destroy() {
        this.element.removeEventListener('click', this.handleClick);
        this.element = null; // Remove reference to DOM element
      }
    }
    // Anti-pattern: Not removing listeners in Android
    public class LeakyActivity extends Activity {
        private SensorManager sensorManager;
        private SensorEventListener sensorListener;
        
        @Override
        protected void onCreate(Bundle savedInstanceState) {
            super.onCreate(savedInstanceState);
            setContentView(R.layout.activity_main);
            
            sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
            Sensor accelerometer = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
            
            sensorListener = new SensorEventListener() {
                @Override
                public void onSensorChanged(SensorEvent event) {
                    // Handle sensor data
                }
                
                @Override
                public void onAccuracyChanged(Sensor sensor, int accuracy) {
                    // Handle accuracy changes
                }
            };
            
            sensorManager.registerListener(sensorListener, accelerometer, SensorManager.SENSOR_DELAY_NORMAL);
            
            // Missing unregisterListener in onPause or onDestroy
        }
    }
    
    // Better approach: Properly unregistering listeners
    public class NonLeakyActivity extends Activity {
        private SensorManager sensorManager;
        private SensorEventListener sensorListener;
        
        @Override
        protected void onCreate(Bundle savedInstanceState) {
            super.onCreate(savedInstanceState);
            setContentView(R.layout.activity_main);
            
            sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
            Sensor accelerometer = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
            
            sensorListener = new SensorEventListener() {
                @Override
                public void onSensorChanged(SensorEvent event) {
                    // Handle sensor data
                }
                
                @Override
                public void onAccuracyChanged(Sensor sensor, int accuracy) {
                    // Handle accuracy changes
                }
            };
            
            sensorManager.registerListener(sensorListener, accelerometer, SensorManager.SENSOR_DELAY_NORMAL);
        }
        
        @Override
        protected void onPause() {
            super.onPause();
            // Unregister listener when activity is paused
            sensorManager.unregisterListener(sensorListener);
        }
    }

    Event listener leaks occur when listeners are registered but not properly unregistered, particularly in component-based architectures or UI frameworks.

    To prevent event listener leaks:

    • Always unregister listeners when they’re no longer needed
    • Implement proper cleanup methods in components
    • Use weak references for listeners when appropriate
    • Follow the lifecycle methods of your framework (e.g., componentWillUnmount in React)
    • Consider using event delegation patterns to reduce the number of listeners
    • Use tools like Chrome DevTools Memory panel to detect listener leaks
    // Anti-pattern: Creating circular references
    function createCircularReference() {
      let parent = {};
      let child = {};
      
      // Create circular reference
      parent.child = child;
      child.parent = parent;
      
      return parent;
    }
    
    // Better approach: Using weak references
    function createNonCircularReference() {
      let parent = {};
      let child = {};
      
      // Create reference from parent to child
      parent.child = child;
      
      // Use WeakRef for the reverse reference (in modern JavaScript)
      child.parent = new WeakRef(parent);
      
      return parent;
    }
    # Anti-pattern: Creating circular references in Python
    def create_circular_reference():
        parent = {}
        child = {}
        
        # Create circular reference
        parent['child'] = child
        child['parent'] = parent
        
        return parent
    
    # Better approach: Using weak references
    import weakref
    
    def create_non_circular_reference():
        parent = {}
        child = {}
        
        # Create reference from parent to child
        parent['child'] = child
        
        # Use weak reference for the reverse reference
        child['parent'] = weakref.ref(parent)
        
        return parent

    Circular references occur when two or more objects reference each other, creating a cycle that can prevent garbage collection in environments without cycle-detecting garbage collectors.

    To prevent circular reference leaks:

    • Use weak references for back-references
    • Implement explicit cleanup methods to break cycles
    • Design object relationships to avoid unnecessary bidirectional references
    • Consider using observer patterns instead of direct references
    • Use data structures that don’t create cycles
    • Manually set references to null when they’re no longer needed
    // Anti-pattern: Unbounded static collection
    public class CacheWithLeak {
        // Static cache that grows without bounds
        private static final Map<String, Object> CACHE = new HashMap<>();
        
        public static void addToCache(String key, Object value) {
            CACHE.put(key, value);
        }
        
        public static Object getFromCache(String key) {
            return CACHE.get(key);
        }
        
        // No method to remove items or clear the cache
    }
    
    // Better approach: Bounded cache with size limits
    public class BoundedCache {
        // Using LinkedHashMap with access order and maximum size
        private static final int MAX_ENTRIES = 1000;
        private static final Map<String, Object> CACHE = new LinkedHashMap<String, Object>(MAX_ENTRIES + 1, 0.75f, true) {
            @Override
            protected boolean removeEldestEntry(Map.Entry<String, Object> eldest) {
                return size() > MAX_ENTRIES;
            }
        };
        
        public static void addToCache(String key, Object value) {
            CACHE.put(key, value);
        }
        
        public static Object getFromCache(String key) {
            return CACHE.get(key);
        }
        
        public static void removeFromCache(String key) {
            CACHE.remove(key);
        }
        
        public static void clearCache() {
            CACHE.clear();
        }
    }
    // Anti-pattern: Unbounded cache in a singleton service
    class LoggerService {
      constructor() {
        if (LoggerService.instance) {
          return LoggerService.instance;
        }
        
        this.logCache = {};
        LoggerService.instance = this;
      }
      
      logMessage(id, message) {
        // Storing every log message without limits
        if (!this.logCache[id]) {
          this.logCache[id] = [];
        }
        
        this.logCache[id].push({
          message,
          timestamp: Date.now()
        });
      }
      
      // No method to clear old logs
    }
    
    // Better approach: Bounded cache with cleanup
    class ImprovedLoggerService {
      constructor() {
        if (ImprovedLoggerService.instance) {
          return ImprovedLoggerService.instance;
        }
        
        this.logCache = {};
        this.maxLogsPerKey = 100;
        this.maxAgeMs = 24 * 60 * 60 * 1000; // 24 hours
        
        // Set up periodic cleanup
        setInterval(() => this.cleanupOldLogs(), 60 * 60 * 1000); // Every hour
        
        ImprovedLoggerService.instance = this;
      }
      
      logMessage(id, message) {
        if (!this.logCache[id]) {
          this.logCache[id] = [];
        }
        
        this.logCache[id].push({
          message,
          timestamp: Date.now()
        });
        
        // Trim if too many logs for this ID
        if (this.logCache[id].length > this.maxLogsPerKey) {
          this.logCache[id] = this.logCache[id].slice(-this.maxLogsPerKey);
        }
      }
      
      cleanupOldLogs() {
        const now = Date.now();
        
        Object.keys(this.logCache).forEach(id => {
          // Remove logs older than maxAgeMs
          this.logCache[id] = this.logCache[id].filter(log => 
            (now - log.timestamp) < this.maxAgeMs
          );
          
          // Remove empty arrays
          if (this.logCache[id].length === 0) {
            delete this.logCache[id];
          }
        });
      }
    }

    Static collections that grow unbounded are a common source of memory leaks, especially in long-running applications or singleton services.

    To prevent unbounded collection growth:

    • Use bounded collections with a maximum size
    • Implement eviction policies (LRU, LFU, FIFO)
    • Set up periodic cleanup of old or unused entries
    • Use weak references for values to allow garbage collection
    • Consider using specialized caching libraries
    • Implement time-based expiration for cached items
    • Monitor collection sizes in production
    // Anti-pattern: Not clearing timers
    class DataPoller {
      constructor(url) {
        this.url = url;
        this.startPolling();
      }
      
      startPolling() {
        // Set up interval that's never cleared
        this.intervalId = setInterval(() => {
          this.fetchData();
        }, 5000);
      }
      
      fetchData() {
        fetch(this.url)
          .then(response => response.json())
          .then(data => this.processData(data));
      }
      
      processData(data) {
        console.log('Processing data:', data);
      }
      
      // Missing stopPolling method to clear the interval
    }
    
    // Better approach: Providing cleanup method
    class ImprovedDataPoller {
      constructor(url) {
        this.url = url;
        this.intervalId = null;
      }
      
      startPolling() {
        // Clear any existing interval first
        this.stopPolling();
        
        this.intervalId = setInterval(() => {
          this.fetchData();
        }, 5000);
      }
      
      stopPolling() {
        if (this.intervalId) {
          clearInterval(this.intervalId);
          this.intervalId = null;
        }
      }
      
      fetchData() {
        fetch(this.url)
          .then(response => response.json())
          .then(data => this.processData(data));
      }
      
      processData(data) {
        console.log('Processing data:', data);
      }
    }
    // Anti-pattern: Not invalidating timers in iOS
    class LeakyViewController: UIViewController {
        var timer: Timer?
        
        override func viewDidLoad() {
            super.viewDidLoad()
            
            // Create timer that's never invalidated
            timer = Timer.scheduledTimer(timeInterval: 1.0, target: self, selector: #selector(updateUI), userInfo: nil, repeats: true)
        }
        
        @objc func updateUI() {
            // Update UI elements
        }
        
        // Missing timer invalidation in deinit or viewWillDisappear
    }
    
    // Better approach: Properly invalidating timers
    class NonLeakyViewController: UIViewController {
        var timer: Timer?
        
        override func viewDidLoad() {
            super.viewDidLoad()
            
            // Create timer
            timer = Timer.scheduledTimer(timeInterval: 1.0, target: self, selector: #selector(updateUI), userInfo: nil, repeats: true)
        }
        
        @objc func updateUI() {
            // Update UI elements
        }
        
        override func viewWillDisappear(_ animated: Bool) {
            super.viewWillDisappear(animated)
            
            // Invalidate timer when view disappears
            timer?.invalidate()
            timer = nil
        }
        
        deinit {
            // Safety check to ensure timer is invalidated
            timer?.invalidate()
        }
    }

    Forgotten timers and intervals are a common source of memory leaks, especially in single-page applications or mobile apps where components are created and destroyed frequently.

    To prevent timer leaks:

    • Always clear intervals and timeouts when they’re no longer needed
    • Implement proper cleanup methods in components
    • Follow component lifecycle methods to clear timers
    • Use weak references in timer callbacks when possible
    • Consider using timer management utilities
    • In iOS, invalidate timers in viewWillDisappear and deinit
    • In Android, cancel handlers in onPause or onDestroy
    // Anti-pattern: Storing DOM references that outlive elements
    class ElementManager {
      constructor() {
        this.elements = {};
      }
      
      registerElement(id, element) {
        // Storing reference to DOM element
        this.elements[id] = element;
      }
      
      // Missing method to unregister elements
    }
    
    // Usage that causes a leak
    const manager = new ElementManager();
    
    function createTemporaryUI() {
      const tempDiv = document.createElement('div');
      document.body.appendChild(tempDiv);
      
      // Register with manager
      manager.registerElement('temp', tempDiv);
      
      // Later, we remove the element from DOM
      document.body.removeChild(tempDiv);
      
      // But the reference still exists in the manager!
    }
    
    // Better approach: Providing cleanup method
    class ImprovedElementManager {
      constructor() {
        this.elements = {};
      }
      
      registerElement(id, element) {
        this.elements[id] = element;
      }
      
      unregisterElement(id) {
        delete this.elements[id];
      }
      
      // Optional: Use weak references
      registerElementWeak(id, element) {
        this.elements[id] = new WeakRef(element);
      }
    }
    
    // Improved usage
    const betterManager = new ImprovedElementManager();
    
    function createTemporaryUIImproved() {
      const tempDiv = document.createElement('div');
      document.body.appendChild(tempDiv);
      
      // Register with manager
      betterManager.registerElement('temp', tempDiv);
      
      // Later, we remove the element from DOM and unregister
      document.body.removeChild(tempDiv);
      betterManager.unregisterElement('temp');
    }
    // Anti-pattern: Storing View references in Android
    public class ViewCache {
        private static Map<String, View> viewCache = new HashMap<>();
        
        public static void cacheView(String id, View view) {
            viewCache.put(id, view);
        }
        
        public static View getView(String id) {
            return viewCache.get(id);
        }
        
        // Missing method to remove views
    }
    
    // Better approach: Using WeakReferences
    public class ImprovedViewCache {
        private static Map<String, WeakReference<View>> viewCache = new HashMap<>();
        
        public static void cacheView(String id, View view) {
            viewCache.put(id, new WeakReference<>(view));
        }
        
        public static View getView(String id) {
            WeakReference<View> weakRef = viewCache.get(id);
            return weakRef != null ? weakRef.get() : null;
        }
        
        public static void removeView(String id) {
            viewCache.remove(id);
        }
        
        public static void clearCache() {
            viewCache.clear();
        }
    }

    Storing references to DOM elements or Views that outlive their visual representation is a common cause of memory leaks in web and mobile applications.

    To prevent DOM/View reference leaks:

    • Use weak references when storing DOM/View references
    • Implement proper cleanup methods to remove references
    • Follow component lifecycle methods
    • Avoid storing references in long-lived objects or singletons
    • Consider using data attributes instead of direct references
    • Use tools like Chrome DevTools Memory panel to detect leaks
    • In Android, avoid storing Activity or View references in static fields
    // Anti-pattern: Closure capturing large objects
    function createLeakyProcessor(data) {
      // data might be a very large object
      
      return function process() {
        // This closure captures the entire data object
        return data.items.map(item => item.value * 2);
      };
    }
    
    // Usage that causes a leak
    const largeData = { items: Array(1000000).fill().map((_, i) => ({ value: i })) };
    const processor = createLeakyProcessor(largeData);
    
    // Even if we don't need largeData anymore, it's still referenced by the closure
    largeData = null; // This doesn't free the original object
    
    // Better approach: Extracting only what's needed
    function createEfficientProcessor(data) {
      // Extract only the necessary data
      const items = data.items.map(item => item.value);
      
      return function process() {
        // This closure only captures the values, not the entire objects
        return items.map(value => value * 2);
      };
    }
    # Anti-pattern: Closure capturing large objects in Python
    def create_leaky_processor(data):
        # data might be a very large dictionary
        
        def process():
            # This closure captures the entire data object
            return [item['value'] * 2 for item in data['items']]
        
        return process
    
    # Better approach: Extracting only what's needed
    def create_efficient_processor(data):
        # Extract only the necessary data
        items = [item['value'] for item in data['items']]
        
        def process():
            # This closure only captures the values, not the entire objects
            return [value * 2 for value in items]
        
        return process

    Closures can cause memory leaks when they capture and retain references to large objects or the entire parent scope, even when only a small portion of that data is needed.

    To prevent closure memory leaks:

    • Extract only the specific data needed by the closure
    • Avoid capturing large objects or collections
    • Be careful with event handlers that capture the parent scope
    • Consider using partial application or currying instead of closures
    • Explicitly set captured variables to null when they’re no longer needed
    • Be aware of the scope chain and what variables are being captured
    • Use memory profiling tools to detect closure-related leaks
    // Anti-pattern: Inefficient image caching
    public class ImageCache {
        // Unbounded cache that stores full-size images
        private static final Map<String, Bitmap> CACHE = new HashMap<>();
        
        public static void cacheImage(String url, Bitmap image) {
            CACHE.put(url, image);
        }
        
        public static Bitmap getImage(String url) {
            return CACHE.get(url);
        }
    }
    
    // Better approach: Size-limited cache with memory-sensitive handling
    public class ImprovedImageCache {
        private static final int MAX_MEMORY = (int) (Runtime.getRuntime().maxMemory() / 1024);
        private static final int CACHE_SIZE = MAX_MEMORY / 8;
        
        private static LruCache<String, Bitmap> mMemoryCache;
        
        static {
            mMemoryCache = new LruCache<String, Bitmap>(CACHE_SIZE) {
                @Override
                protected int sizeOf(String key, Bitmap bitmap) {
                    // The cache size will be measured in kilobytes
                    return bitmap.getByteCount() / 1024;
                }
                
                @Override
                protected void entryRemoved(boolean evicted, String key, Bitmap oldValue, Bitmap newValue) {
                    // Optional: handle evicted bitmaps (e.g., add to disk cache)
                }
            };
        }
        
        public static void cacheImage(String url, Bitmap bitmap) {
            if (bitmap != null && url != null) {
                mMemoryCache.put(url, bitmap);
            }
        }
        
        public static Bitmap getImage(String url) {
            return mMemoryCache.get(url);
        }
        
        public static void clearCache() {
            mMemoryCache.evictAll();
        }
    }
    // Anti-pattern: Inefficient caching of large objects
    class DataCache {
      constructor() {
        this.cache = {};
      }
      
      storeData(key, data) {
        // Storing potentially large objects without limits
        this.cache[key] = data;
      }
      
      getData(key) {
        return this.cache[key];
      }
    }
    
    // Better approach: Memory-sensitive caching
    class ImprovedDataCache {
      constructor(maxItems = 100, maxSizeMB = 50) {
        this.cache = new Map();
        this.maxItems = maxItems;
        this.maxSizeBytes = maxSizeMB * 1024 * 1024;
        this.currentSizeBytes = 0;
      }
      
      estimateSize(data) {
        // Rough estimation of object size in bytes
        const jsonString = JSON.stringify(data);
        return new Blob([jsonString]).size;
      }
      
      storeData(key, data) {
        // Check if key already exists
        if (this.cache.has(key)) {
          const oldSize = this.cache.get(key).size;
          this.currentSizeBytes -= oldSize;
        }
        
        const size = this.estimateSize(data);
        
        // Check if this item would exceed our max size
        if (size > this.maxSizeBytes) {
          console.warn(`Item ${key} is too large to cache (${size} bytes)`);  
          return false;
        }
        
        // Make room if necessary
        while (this.cache.size >= this.maxItems || 
               (this.currentSizeBytes + size) > this.maxSizeBytes) {
          // Remove oldest entry (first item in Map)
          const oldestKey = this.cache.keys().next().value;
          const oldSize = this.cache.get(oldestKey).size;
          this.cache.delete(oldestKey);
          this.currentSizeBytes -= oldSize;
        }
        
        // Store the data with its size
        this.cache.set(key, {
          data,
          size,
          timestamp: Date.now()
        });
        
        this.currentSizeBytes += size;
        return true;
      }
      
      getData(key) {
        const item = this.cache.get(key);
        return item ? item.data : null;
      }
      
      clear() {
        this.cache.clear();
        this.currentSizeBytes = 0;
      }
    }

    Memory-intensive caching can lead to excessive memory consumption, especially when caching large objects like images, datasets, or complex structures.

    To implement memory-efficient caching:

    • Set appropriate size limits based on available memory
    • Use LRU (Least Recently Used) or similar eviction policies
    • Consider the memory footprint of cached objects
    • Implement multi-level caching (memory, disk, network)
    • Use weak references for non-critical cache entries
    • Monitor cache size and memory usage
    • Consider using specialized caching libraries
    • Implement proper cache invalidation strategies
    • Use memory-efficient data structures for cached items
    // Example: Using Chrome DevTools for memory leak detection
    
    // 1. Take heap snapshot before suspected leak
    // In Chrome DevTools: Memory tab > Heap Snapshot > Take Snapshot
    
    // 2. Perform actions that might cause a leak
    function potentiallyLeakyOperation() {
      // Create and destroy components, perform operations, etc.
    }
    
    // 3. Take another heap snapshot
    // In Chrome DevTools: Memory tab > Heap Snapshot > Take Snapshot
    
    // 4. Compare snapshots to identify retained objects
    // In Chrome DevTools: Select second snapshot > Filter by "Objects allocated between Snapshot 1 and Snapshot 2"
    // Example: Using LeakCanary for Android memory leak detection
    
    // In build.gradle
    dependencies {
      // Debug dependency
      debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.7'
    }
    
    // LeakCanary automatically watches for Activity and Fragment leaks
    // For custom objects:
    
    class MyApplication extends Application {
      @Override
      public void onCreate() {
        super.onCreate();
        
        // Watch for leaks in custom objects
        AppWatcher.Config config = AppWatcher.getConfig()
            .newBuilder()
            .watchActivities(true)
            .watchFragments(true)
            .watchViewModels(true)
            .build();
        AppWatcher.setConfig(config);
      }
    }

    Detecting and preventing memory leaks requires a combination of tools, practices, and awareness.

    Memory leak detection strategies:

    • Use memory profiling tools (Chrome DevTools, Android Profiler, etc.)
    • Implement automated memory leak detection in CI/CD pipelines
    • Use specialized libraries like LeakCanary for Android
    • Monitor memory usage over time to identify gradual increases
    • Implement proper logging and metrics for memory usage
    • Conduct regular code reviews focused on memory management
    • Use static analysis tools to identify potential leaks
    • Test applications under memory pressure

    Prevention best practices:

    • Follow proper resource management patterns
    • Implement appropriate cleanup methods
    • Use weak references for back-references
    • Be cautious with static collections and singletons
    • Understand object lifecycle in your framework
    • Implement proper caching strategies
    • Educate team members about common memory leak patterns
    CPU-Intensive OperationsInefficient Algorithms
    websitexgithublinkedin
    Powered by Mintlify
    Assistant
    Responses are generated using AI and may contain mistakes.