Introduction
Getting Started
- QuickStart
Patterns
- Languages
- Supported Languages
- Python
- Java
- JavaScript
- TypeScript
- Node.js
- React
- Fastify
- Next.js
- Terraform
- C#
- C++
- C
- Go
- Rust
- Swift
- React Native
- Spring Boot
- Kotlin
- Flutter
- Ruby
- PHP
- Scala
- Perl
- R
- Dart
- Elixir
- Erlang
- Haskell
- Lua
- Julia
- Clojure
- Groovy
- Fortran
- COBOL
- Pascal
- Assembly
- Bash
- PowerShell
- SQL
- PL/SQL
- T-SQL
- MATLAB
- Objective-C
- VBA
- ABAP
- Apex
- Apache Camel
- Crystal
- D
- Delphi
- Elm
- F#
- Hack
- Lisp
- OCaml
- Prolog
- Racket
- Scheme
- Solidity
- Verilog
- VHDL
- Zig
- MongoDB
- ClickHouse
- MySQL
- GraphQL
- Redis
- Cassandra
- Elasticsearch
- Security
- Performance
Integrations
- Code Repositories
- Team Messengers
- Ticketing
Enterprise
R is a programming language and free software environment for statistical computing and graphics supported by the R Foundation for Statistical Computing. It is widely used among statisticians and data miners for data analysis and developing statistical software.
R, despite being a powerful language for statistical computing and data analysis, has several common anti-patterns that can lead to inefficient code, memory issues, and maintenance problems. Here are the most important anti-patterns to avoid when writing R code.
# Anti-pattern: Growing objects in a loop
result <- c()
for (i in 1:1000000) {
result <- c(result, i) # Inefficient: creates a new vector each time
}
# Better approach: Pre-allocate memory
result <- numeric(1000000)
for (i in 1:1000000) {
result[i] <- i
}
# Even better: Use vectorization
result <- 1:1000000
Avoid growing objects incrementally in loops. Pre-allocate memory for the final object size or use vectorized operations instead.
# Anti-pattern: Using apply() on data frames
df <- data.frame(a = 1:10, b = 11:20, c = 21:30)
result <- apply(df, 2, mean) # Converts to matrix, losing column types
# Better approach: Use lapply() or vapply() for data frames
result <- vapply(df, mean, numeric(1))
# Or use dplyr
library(dplyr)
result <- df %>% summarise_all(mean)
Avoid using apply()
on data frames as it converts them to matrices, which can lead to unexpected results if columns have different types. Use lapply()
, vapply()
, or packages like dplyr instead.
# Anti-pattern: Inconsistent subsetting
df <- data.frame(a = 1:10, b = 11:20)
x <- df$a # Using $
y <- df[['b']] # Using [[]]
# Function that fails with $ notation
process_column <- function(data, col_name) {
return(mean(data$col_name)) # This doesn't work as expected
}
# Better approach: Consistent use of [[]]
process_column <- function(data, col_name) {
return(mean(data[[col_name]])) # This works correctly
}
Be consistent with subsetting operators. Use [[]]
when the column name is stored in a variable or when writing functions that take column names as parameters.
# Anti-pattern: Using attach()
df <- data.frame(x = 1:10, y = 11:20)
attach(df)
result <- x + y # Seems convenient but dangerous
# What if we modify df or create new variables with the same names?
detach(df)
# Better approach: Use with() or explicit references
result <- with(df, x + y)
# Or use pipe operators
library(dplyr)
result <- df %>% mutate(sum = x + y) %>% pull(sum)
Avoid using attach()
as it can lead to confusing scoping issues and hard-to-find bugs. Use with()
, explicit references, or pipe operators instead.
# Anti-pattern: Using row.names for data
df <- data.frame(x = 1:3, y = 4:6)
row.names(df) <- c("A", "B", "C")
# Better approach: Use a proper column
df <- data.frame(id = c("A", "B", "C"), x = 1:3, y = 4:6)
Avoid using row.names()
to store actual data. Instead, include the information as a proper column in your data frame.
# Anti-pattern: Using for loops for simple operations
x <- 1:1000
result <- numeric(length(x))
for (i in seq_along(x)) {
result[i] <- x[i] * 2
}
# Better approach: Use vectorization
result <- x * 2
Avoid using for loops for operations that can be vectorized. R is optimized for vector operations, which are typically much faster.
# Anti-pattern: Using global variables and <<-
counter <- 0
increment_counter <- function() {
counter <<- counter + 1 # Modifies global variable
}
# Better approach: Pass and return values explicitly
increment_counter <- function(counter) {
return(counter + 1)
}
counter <- increment_counter(counter)
Avoid using global variables and the <<-
operator. Instead, pass values explicitly to functions and return modified values.
# Anti-pattern: No error handling
process_file <- function(file_path) {
data <- read.csv(file_path) # Will error if file doesn't exist
# Process data...
return(result)
}
# Better approach: Use tryCatch
process_file <- function(file_path) {
tryCatch({
data <- read.csv(file_path)
# Process data...
return(result)
}, error = function(e) {
warning(paste("Error processing file:", e$message))
return(NULL)
})
}
Use proper error handling with tryCatch()
to gracefully handle errors and provide meaningful error messages.
# Anti-pattern: Using T and F
if (x > 10) {
flag <- T
} else {
flag <- F
}
# Better approach: Use TRUE and FALSE
if (x > 10) {
flag <- TRUE
} else {
flag <- FALSE
}
# Even better: Direct logical result
flag <- x > 10
Avoid using T
and F
as shortcuts for TRUE
and FALSE
. They are just variables that can be reassigned, potentially leading to confusing bugs.
# Anti-pattern: Letting strings be converted to factors
df <- read.csv("data.csv") # By default, strings become factors
# Better approach: Be explicit about factor conversion
df <- read.csv("data.csv", stringsAsFactors = FALSE)
# Convert specific columns to factors as needed
df$category <- factor(df$category)
Avoid letting R automatically convert strings to factors. Be explicit about which columns should be factors. Note that in R 4.0.0 and later, the default changed to stringsAsFactors = FALSE
.
# Anti-pattern: Using rm(list=ls()) at the beginning of scripts
rm(list=ls()) # Clears the entire environment
# Better approach: Use separate R sessions or restart R
# Or be specific about what to remove
rm(temp_var, another_var)
Avoid using rm(list=ls())
to clean your environment, especially in scripts or functions. It can lead to unexpected behavior and makes code less reproducible. Instead, restart R or use separate R sessions.
# Anti-pattern: Loading packages without checking
library(dplyr)
library(ggplot2)
# What if these packages aren't installed?
# Better approach: Check and install if needed
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
library(dplyr)
# Even better: Use pacman or similar
if (!requireNamespace("pacman", quietly = TRUE)) {
install.packages("pacman")
}
pacman::p_load(dplyr, ggplot2, tidyr)
Use proper package management to check if packages are installed before loading them, and install them if needed.
# Anti-pattern: Using setwd() in scripts
setwd("/path/to/my/project") # Not portable across different systems
# Better approach: Use here package or relative paths
library(here)
data <- read.csv(here("data", "mydata.csv"))
Avoid using setwd()
in scripts as it makes them less portable. Use the here
package or relative paths instead.
# Anti-pattern: No or minimal documentation
process_data <- function(data, threshold) {
# Complex processing...
return(result)
}
# Better approach: Use roxygen2 style documentation
#' Process data based on threshold
#'
#' @param data A data frame containing the input data
#' @param threshold Numeric threshold for filtering
#' @return A processed data frame
#' @examples
#' process_data(my_data, 0.5)
process_data <- function(data, threshold) {
# Complex processing...
return(result)
}
Document your functions and scripts properly, preferably using roxygen2-style comments for functions.
# Anti-pattern: Using sapply() when return type might vary
result <- sapply(mixed_list, process_item) # Might return list, vector, or matrix
# Better approach: Use vapply() with explicit return type
result <- vapply(mixed_list, process_item, numeric(1))
# Or use lapply() if you need a list
result <- lapply(mixed_list, process_item)
Avoid using sapply()
when the return type might vary. Use vapply()
with an explicit return type or lapply()
instead.
# Anti-pattern: Using data frames for simple lookups
lookup_df <- data.frame(key = c("A", "B", "C"), value = c(1, 2, 3))
get_value <- function(key) {
lookup_df$value[lookup_df$key == key] # Inefficient for large data
}
# Better approach: Use named vectors or environments
lookup_vec <- c(A = 1, B = 2, C = 3)
get_value <- function(key) {
lookup_vec[key] # Much faster
}
Choose appropriate data structures for your task. For lookups, named vectors or environments are often more efficient than data frames.
# Anti-pattern: Inefficient subsetting
df <- data.frame(id = 1:1000, value = rnorm(1000))
subset_df <- df[df$id %in% target_ids, ] # Creates a copy
# Better approach: Use data.table or dplyr
library(data.table)
dt <- as.data.table(df)
subset_dt <- dt[id %in% target_ids] # More efficient
# Or with dplyr
library(dplyr)
subset_df <- df %>% filter(id %in% target_ids)
Use efficient subsetting methods, especially for large datasets. Consider using packages like data.table or dplyr for better performance.
# Anti-pattern: Inconsistent or unclear naming
x <- 10
procesData <- function(d) { /* ... */ }
calc.result <- procesData(x)
# Better approach: Consistent, descriptive naming
temperature_celsius <- 10
process_data <- function(data) { /* ... */ }
calculated_result <- process_data(temperature_celsius)
Use consistent, descriptive naming conventions for variables and functions. The most common convention in R is snake_case (words separated by underscores).
# Anti-pattern: No testing
calculate_mean <- function(x) {
sum(x) / length(x) # What if x is empty or contains NA?
}
# Better approach: Use testthat or similar
library(testthat)
test_that("calculate_mean works correctly", {
expect_equal(calculate_mean(c(1, 2, 3)), 2)
expect_equal(calculate_mean(c(1, NA, 3), na.rm = TRUE), 2)
expect_error(calculate_mean(numeric(0)))
})
# And fix the function
calculate_mean <- function(x, na.rm = FALSE) {
if (length(x) == 0) stop("Cannot calculate mean of empty vector")
sum(x, na.rm = na.rm) / sum(!is.na(x) | !na.rm)
}
Write tests for your functions to ensure they work correctly in different scenarios. Use packages like testthat for structured testing.
# Anti-pattern: Using print() for debugging
process_data <- function(data) {
print("Processing data...")
result <- some_calculation(data)
print(result)
return(result)
}
# Better approach: Use logging packages
library(logger)
process_data <- function(data) {
log_info("Processing data...")
result <- some_calculation(data)
log_debug("Calculation result: {result}")
return(result)
}
Avoid using print()
statements for debugging. Use proper logging packages like logger or futile.logger instead.
# Anti-pattern: Creating large intermediate objects
process_large_data <- function(data) {
temp1 <- expensive_operation1(data) # Large intermediate object
temp2 <- expensive_operation2(temp1) # Another large object
result <- final_calculation(temp2)
return(result)
}
# Better approach: Clean up intermediate objects
process_large_data <- function(data) {
temp1 <- expensive_operation1(data)
temp2 <- expensive_operation2(temp1)
rm(temp1) # Remove when no longer needed
gc() # Suggest garbage collection
result <- final_calculation(temp2)
return(result)
}
Be mindful of memory usage, especially when working with large datasets. Remove large objects when they’re no longer needed and consider using packages like data.table or ff for out-of-memory processing.
# Anti-pattern: Mutable default arguments
add_to_list <- function(item, my_list = c()) {
my_list <- c(my_list, item)
return(my_list)
}
# This works as expected in R, unlike Python, but is still confusing
# Better approach: Initialize inside the function
add_to_list <- function(item, my_list = NULL) {
if (is.null(my_list)) my_list <- c()
my_list <- c(my_list, item)
return(my_list)
}
Be careful with default arguments, especially when they are complex objects. Initialize them inside the function if needed.